
Les fonctions logiques

I- Généralités sur l'algèbre binaire (ou algèbre de Boole).

Les variables ${\bf e}$ et ${\bf S}$ sont des variables binaires. Elles ne peuvent prendre que deux états : «0» et «1».

On appelle la variable **e** <u>: variable d'entrée</u> (organe de commande). On appelle la variable **S** : <u>variable de sortie</u> (organe commandé).

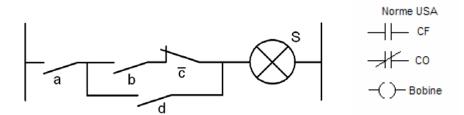
II- Fonctions logiques de base.

Fonction	Schéma développé	Table de vérité	Equation	Symbole EU	Symbole USA
OUI NON inverseuse	e S	e S 0 0 1 1	S = <mark>e</mark>	e 1 s	e S
NON Inverse inverseuse	s S	e S 0 1 1 0	S = <mark>e</mark>	e 1	e co
ET AND	e ₁ e ₂ S	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S = <mark>e₁ . e₂</mark>	e1 & S	e1 e2
OU OR	e ₂ S	e1 e2 S 0 0 0 0 1 1 1 1 1 1 0 1	$S = e_1 + e_2$	$\begin{array}{c c} \underline{e1} \\ \underline{e2} \end{array} \ge 1 \underline{\hspace{1cm}} S$	e1 e2 S

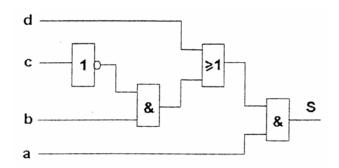
Cours1GEL Les fonctions logiques v2k3.doc	NEY.O.	Page 1	1
---	--------	--------	---

III- Représentation d'une équation logique.

3-1. But


Préparer :

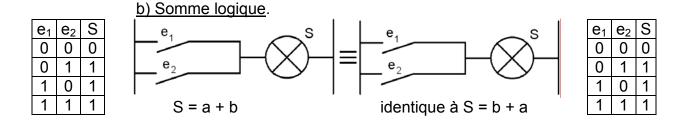
- le câblage de la partie commande
- ou la programmation d'un API (Automate Programmable Industriel)


3-2. Familles d'outils

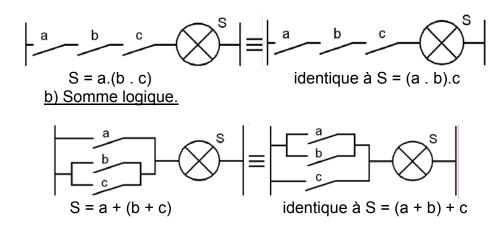
Soit l'équation : $S = a \cdot (b \cdot c + d)$

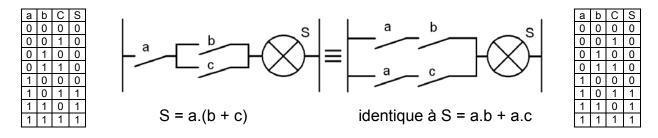
a) Schéma à contacts. (Electricité)



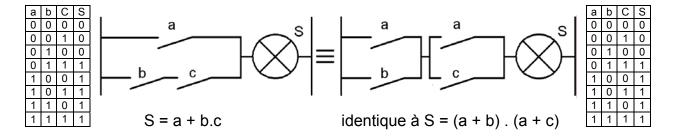

b) <u>Logigramme</u>. (Electronique ou Pneumatique)

IV- Propriété de l'algèbre de Boole.


4-1. Propriété de commutativité. a)Produit logique.


4-2. Propriété d'associativité.

a) Produit logique.



4-3. Propriété de distributivité.

a) Distributivité du produit par rapport à la somme.

b) Distributivité de la somme par rapport au produit.

Attention cette distributivité est interdite en algèbre classique!

4-4 Identités remarquables.

Fonction	Représentation électrique	е	S	Equation
ET	S S	0	0	
		1	1	e.1=e
	s of	0	0	e . 0 = 0
	e 0	1	0	6.0-0

Cours1GEL Les fonctions logiques v2k3.doc	NEY.O.	Page 3
---	--------	--------

AII / Chapitre 1 : les fonctions logiques (C.I. : traitement de données)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	0	e . e = 0
ē iē	1	0	
L S	0	0	0.070
e le	1	1	e.e=e

Fonction	Représentation électrique	е	S	Equation
e s		0	1	S = e + 1 = 1
		1	1	
e s	0	0		
		1	1	S = e + 0 = e
OU	a	0	1	S = e + e = 1
	F E	1	1	
	e s	0	0	S=e+e=e
		1	1	

Remarques:

- Pas d'exposants : **a . a = a.**

- Pas de coefficients : a + a = a.

V- Théorèmes de De Morgan.

5-1. Premier théorème.

Le complément d'une somme logique est égal au produit logique des termes complémentés de cette somme.

$$\overline{a + b} = \overline{a} \cdot \overline{b}$$

5-2. Deuxième théorème.

Le complément d'un produit logique est égal à la somme logique des termes complémentés de ce produit.

5-3. Remarque.

	Cours1GEL	Les fonctions logiques v2k3.doc	NEY.O.	Page 4	
--	-----------	---------------------------------	--------	--------	--

AII / Chapitre 1 : les fonctions logiques (C.I. : traitement de données)

Toute double complémentation d'une variable entraîne la simplification

suivante:

<u>≠</u> a = a

De sorte que :

et

<u>a</u> = a

5-4. Conclusion.

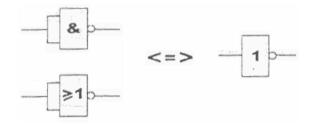
Pour complémenter une équation ou une fonction, il suffit :

- de remplacer chaque terme par son complément ;
- de remplacer chaque signe + par un signe . et réciproquement.

VI- Fonctions logiques secondaires.

Fonction	Schéma développé	Table de vérité	Equation	Symbole (E.U)	Symbole USA
NOR (Non Ou)	e ₁ e ₂ S	e1 e2 S 0 0 1 0 1 0 1 1 0 1 0 0	$S = \overline{e_1 + e_2} = \overline{e_1} \cdot \overline{e_2}$	<u>e1</u> <u>e2</u> ≥1 <u>S</u>	<u>e1</u> <u>e2</u>
Nand (Non ET)	e ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$S = \overline{e_1 \cdot e_2} = \overline{e_1} + \overline{e_2}$	e1 & S	e1 e2 S
OU Exclusif XOR	e_1 e_2	e1 e2 S 0 0 0 0 1 1 1 1 0 1 0 1	$S = (\overline{e_1} \cdot e_2) + (e_1 \cdot \overline{e_2})$ $= e_1 + e_2$	e1 e2 =1 S	e1 S
XNOR	e ₁ e ₂	e1 e2 S 0 0 1 0 1 0 1 1 1 1 0 0	$S = (e_1 \cdot e_2) + (e_1 \cdot e_2)$	e1 =1 S	e <u>1</u>)) S

VII- Universalité des fonctions logiques NAND et NOR


Cours1GEL Les fonctions logiques v2k3.doc	NEY.O.	Page 5	5
---	--------	--------	---

AII / Chapitre 1 : les fonctions logiques (C.I. : traitement de données)

Toutes les expressions booléennes se résument à différentes combinaisons des opérations élémentaires *ET*, *OU* et *NON*. C'est pourquoi, la matérialisation de toute expression logique est faisable en ne recourant qu'à des portes logiques NAND ou NOR judicieusement câblées et regroupées.

FONCTION OU	Deux opérateurs OU – NON	Trois opérateurs ET – NON
FONCTION ET	Trois opérateurs OU – NON	Deux opérateurs ET – NON
FONCTION OU - NON	Quatre opéra	teurs ET - NON
FONCTION ET – NON	Quatre opéra	teurs OU - NON

Remarque:

Cours1GEL Les fonctions logiques v2k3.doc	NEY.O.	Page	6	l
---	--------	------	---	---